M(x)=15x^2-2x-45

Simple and best practice solution for M(x)=15x^2-2x-45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M(x)=15x^2-2x-45 equation:



(M)=15M^2-2M-45
We move all terms to the left:
(M)-(15M^2-2M-45)=0
We get rid of parentheses
-15M^2+M+2M+45=0
We add all the numbers together, and all the variables
-15M^2+3M+45=0
a = -15; b = 3; c = +45;
Δ = b2-4ac
Δ = 32-4·(-15)·45
Δ = 2709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2709}=\sqrt{9*301}=\sqrt{9}*\sqrt{301}=3\sqrt{301}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{301}}{2*-15}=\frac{-3-3\sqrt{301}}{-30} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{301}}{2*-15}=\frac{-3+3\sqrt{301}}{-30} $

See similar equations:

| 23=-7+7x+3x | | 1=2p−1 | | 4(x-6)+22=4x-1 | | 7x+4=13x+4 | | 3(p-2)+2(p+4)=5 | | 1/4(8x+12)=1/2(6x+2) | | (y/5)2=121 | | 9(x-7)+28=9x+35 | | 0.10x+0.05(6-x)=0.10(7) | | 6(x+7)+7=8x-2(x-4) | | 9x4=6x | | 2x-15+3+5x=-4x-3x+9 | | 3+n/1=3 | | 5/2x-10+3/4x=2+5/2x+3-1/2 | | (y-3)-(y+5)=7y | | 3x-20+2x+50=x+10 | | 5(x-2)-(4x+2)=9 | | 2(x-8)+9x=-2 | | 7-5p+6p=p+7 | | 4+4x=3(x+3) | | -7x+7+12x=5x+12 | | 16x-(5x-9)=97 | | (3x/2)+(x/6)=-(5/3) | | -5(2x-11)=2(x-1)-15 | | 5(x-2)-(4x,+2)=9 | | 3x-(4+5)=17 | | 6d-3=4d+1 | | 12x-5=2x | | 10x-1.4=7.2 | | 7x-3+4x+23+16x+15+6x-5=360 | | 4x^2*14x=0 | | 1/2(x-8)=14+5x |

Equations solver categories